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The learning problem - Outline

e Example of machine learning
e Components of Learning

e A simple model

e [ypes of learning

o Puzzle
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Example: Predicting how a viewer will rate a movie
10% improvement = 1 million dollar prize

The essence of machine learning:

e A pattern exists.
e Ve cannot pin it down mathematically.

e \\e have data on it.
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Movie rating - a solution
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The learning approach

viewer

movie

LEARNING

rating
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Components of learning

Metaphor: Credit approval

Applicant information:

Approve credit?

age 23 years
gender male
annual salary $30,000
years in residence 1 year
years in job 1 year
current debt $15 000
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Components of learning
Formalization:
e Input: X (customer application)
e Output: ¥y (good/bad customer?)
e [arget function: f: X — ) (ideal credit approval formula)
e Data: (x1,%1), (X2,¥2), - , (XN, UN) (historical records)

Lol

e Hypothesis: g : X — ) (formula to be used)
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UNKNOWN TARGET FUNCTION
f. X=

(ideal credit approval function)

TRAINING EXAMPLES
(X 2y ) (X %)

(historical records of credit customers)

LEARNING FINAL
——=1 HYPOTHESIS

g=f

ALGORITHM

(final credit approval formula)

HYPOTHESIS SET
H

(set of candidate formulas)
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Solution components

The 2 solution components of the learning UNKNOWN TARGET FUNCTION
prOblem: (ideal credit approval function)

TRAINING EXAMPLES

e [he Hypothesis Set 0y ) )

(historical records of credit customers)

H = {h} g c H L EARNING FINAL

—1 HYPOTHESIS
g =f

ALGORITHM

(final credit approval formula)

e [he Learning Algorithm

HYPOTHESIS SET
H

Together, they are referred to as the learning (st of candidate formulas)
model.
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A simple hypothesis set - the "‘perceptron

For input x = (@1, -+ ,xq) attributes of a customer’

d
Approve credit if ) w;x; > threshold,
i=1

d
Deny credit if ) w;x; < threshold.
i=1

This linear formula h € H can be written as

h(x) = sign ((Z wla:@) — threshold)
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d
h(x) = sign Z w; i |+ wo

1=1
Introduce an artificial coordinate g = 1: - + -
_ N .
d +
] + . +
h(x) = sign Zwi x; )
1=0 -
. linearly separable data
In vector form, the perceptron implements
h(x) = sign(w'x)
11/19
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A simple learning algorithm - PLA

The perceptron implements
h(x) = sign(W'x) y=+1 WYX

Given the training set:

(X17 yl)a (X27 y2)7 T (XN7 yN)

pick a misclassified point:

SIgn (WTXn) #+ Un

and update the weight vector;

W — W+ YXn

Learning From Data - Lecture 1 ].2/].9



Iterations of PLA

e One iteration of the PLA:

W «— W + yX

where (x,y) is a misclassified training point. —

e At iterationt = 1,2, 3, -+, pick a misclassified point from

(X17 yl)a (X27 y2)7 T (XN7 yN)

and run a PLA iteration on it.

e [hats it
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The learning problem - Outline

e Example of machine learning
e Components of learning

e A simple model

e Types of learning

o Puzzle
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Basic premise of learning

‘using a set of observations to uncover an underlying process”

broad premise == many variations

e Supervised Learning
e Unsupervised Learning

e Reinforcement Learning
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Example from vending machines — coin recognition

Supervised learning

Mass

10

25

Size

Mass

10

25

Size
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Instead of (input,correct output), we get (input, 7 )

Learning From Data - Lecture 1

Unsupervised learning
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Reinforcement learning

Instead of (input,correct output),

we get (input,some output,grade for this output)

I'."

an The world champion was

20 |

lI |
|III
f

bl a neural network!

[ =

:
I|
[ [
I|
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s
"

A Learning puzzle
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Review of Lecture 1 Example: Perceptron Learning Algorithm

e | earning is used when

- A pattern exists
- We cannot pin it down mathematically

- We have data on it

e Focus on supervised learning

- Unknown target function y = f(x) e Learning an unknown function?

- Data set (x1,41), -+ , (X, yn) - Impossible @. The function can assume

any value outside the data we have.
- Learning algorithm picks g = f from
- So what now?

a hypothesis set 'H
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Feasibility of learning - Outline

e Probability to the rescue
e Connection to learning
e Connection to real learning

e A dilemma and a solution
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A related experiment

- Consider a ‘'bin with red and green marbles. BIN

P[ Picking a red marble ] = U /\S APl E
P[ picking a green marble | =1 — p m 0000:00000
V = fraction

of red marbles

- The value of 1 is unknown to us.

AAAAAAAAA

- We pick IN marbles independently. U = probability

| | of red marbles
- The fraction of red marbles in sample = v

Learning From Data - Lecture 2 3/].7



Does V say anything about u?

No!
BIN

Sample can be mostly green while bin is

mostly red. Ko SAMPLE
m 0000000000

Yes! V = fraction

of red marbles

Sample frequency U is likely close to bin
frequency ,u AAAAAAAAA

Ll = probability

| f red bl
possible versus probable Of Ted marbies
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What does VV say about (7

In a big sample (large N), U is probably close to p (within €).

Formally,

P[lv— p| >e] <2e 2N

This is called Hoeffding's Inequality.

In other words, the statement "4 = V" is PA.C

Learning From Data - Lecture 2 5/17



e Valid for all V and €

e Bound does not depend on
e [radeofl: N € and the bound.
o VR U — UV ©

Learning From Data - Lecture 2

Pllv— | > ¢ < 2e 2N

BIN

s AMPLE
m 0000000000

V) = fraction
of red marbles

AAAAAAAAA

L = probability
of red marbles
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Connection to learning

® h(x)#1(x)

Bin: The unknown is a number u

® h(x)=f(x)

Learning: The unknown is a function f : X — )

Fach marble @ isa point x € X

e . Hypothesis got it right h(x)=f(x)

e . Hypothesis got it wrong  h(x)#f(x)

Learning From Data - Lecture 2 7/17



Back to the learning diagram

_ UNKNOWN TARGET FUNCTION PROBABILITY
The bin analogy: f. X0y DISTRIBUTION
P on .X

TRAINING EXAMPLES )
B o e o 0

(1 ¥,)s e s (%0,

LEARNING FINAL
HYPOTHESIS

g=f

ALGORITHM

HYPOTHESIS SET
H
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Are we done?

® h f
Not so fast! h is fixed. (X)F1(x)

® h(x)=f(x)

For this h, v generalizes to .
‘verification’ of h, not learning

No guarantee v will be small.

We need to choose from multiple hA's.

Learning From Data - Lecture 2 9/17



Multiple bins

Generalizing the bin model to more than one hypothesis:

n, n, n,

Vi Vs W

Learning From Data - Lecture 2 10/17



Notation for learning
Both (& and I/ depend on which hypothesis h
V is 'in sample’ denoted by Fi,(h)
W is ‘out of sample’ denoted by F,.:(h)

The Hoeffding inequality becomes:

P[|E.(h) — Eoe(h)] > €] < 2e72¢N

Learning From Data - Lecture 2

Ei n( h)
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Notation with multiple bins

Ein(h) Ein(h,) Ein(h,,)

Learning From Data - Lecture 2 12/17



Not so fast!! Hoeffding doesn't apply to multiple bins.

What?

BIN

s AMPLE
‘%‘ 0000000000

V = fraction
of red marbles

L = probability
of red marbles

Learning From Data - Lecture 2

Are we done already?

4

UNKNOWN TARGET FUNCTION PROBABILITY
f: X= DISTRIBUTION
| Pon X
TRAINING EXAMPLES
X, ey X
(6 ) s (e, Loy

FINAL
HYPOTHESIS

& LEARNING
=]
ALGORITHM
K ﬂ

HYPOTHESIS SET
H

g=f

®©

N

h, h,

Eou(hy)

Ein(hy)

Einthy) Ein(hy)
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Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you
will get 10 heads?’

Answer: ~ 0.1%

Question: It you toss 1000 fair coins 10 times each, what is the probability
that some coin will get 10 heads?’

Answer: =~ 63%

Learning From Data - Lecture 2 ]_4/]_7



From coins to learning

AAAAAAAAA AAAAAAAAA AAAAAAAAA

BINGO 7
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A simple solution

P[ |Ein(g) — Eout(g)] > €]

VAN

IP)[ ’Ein(hl) — Eout(hl)’ > €
or | Ep(hy) — Eon(hy)| > €

ot | En(har) — Bou(har)| > €]
M

< Y P[|En(hm) — Eow(hm)| > €

m=1
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The final verdict

VAN
NE
S
=
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Review of Lecture 2 Since g has to be one of hy, ho, -+, hyy,

| | we conclude that
s Learning feasible?

Yes, in a probabilistic sense. I

Ein — Eout
E.(h) Ein(9) ()] > e

Then:
Ei.(h1) — Eoi(h1)| > € or
Ei(hy) — Eoui(ho)| > € or

AAAAAAAAA

’Eln(hM) — Eout(hM)’ > €

Ei n( h)

P||E.(h) — Ex(h)| >e€] < 9¢—26°N This gives us an added M factor.
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Input representation

| inear Classification

Linear Regression

Nonlinear Transformation

Outline
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A real data set
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Input representation

raw’ input X = (7.21, T2, + , T256)

linear model:  (wq, wy, wo, - - -, Wasg)

Features: Extract useful information, e.g.,

intensity and symmetry x = (1,21, Z2)

linear model: (wo, wy, wo)
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lllustration of features

X = (.21, T2) x1: intensity To. symmetry

Learning From Data - Lecture 3 5/23



What PLA does

Evolution of Ei, and E, Final perceptron boundary
50%
OI Eout
" | |
B
|
1% . ’
Ein

0 250 500 750 1000
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The "‘pocket’ algorithm

PLA: Pocket:
50% 50%t¢
OI Eout 0'}
10%t h [ 10%t
LT
- Eout
1%} | ’ 1%
E Eln
M M " in . M M " .
0 250 500 750 1000 0 250 500 750 1000
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Classification boundary - PLA versus Pocket

PLA: Pocket:

Learning From Data - Lecture 3 8/23



Outline

e |nput representation

e Linear Classification

e Linear Regression regression = real-valued output

e Nonlinear Transformation

Learning From Data - Lecture 3 9/23



Credit again

Classification: Credit approval (yes/no)

Regression: Credit line (dollar amount)

age 23 years

_ annual salary $30.000
|nPUt' X = years in residence 1 year
years in job 1 year

current debt $15.000

d
Linear regression output: h(x) = Zw@- T; = W'X
1=0

10/23



The data set

Credit officers decide on credit lines:

(X17 yl)a (X27 y2)7 T (XN7 yN)

Un, € R is the credit line for customer x,,.

Linear regression tries to replicate that.

11/23



How to measure the error

How well does h(x) = w™x approximate f(x)?

In linear regression, we use squared error (h(x) — f(x))?

N
1
in-sample error: FE,,(h) = N g (h(x,) — yn)2
n=1

Learning From Data - Lecture 3 12/23



lllustration of linear regression

13/23



The expression for Ej,

1

Ein(W> — N
1

N

_ _XlT_
_XNT_

Y1
Y2

YN
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Minimizing E;,

Eo(w) = 4IXw -y
VE,(w)=2X"Xw —y) =0
X'Xw =Xy
w = Xy where XTI = (X'X)"1XT

X1 is the ‘pseudo-inverse’ of X

15/23



The pseudo-inverse

Xt = (X7X)1XT

d+1 x d+1 d+1 x N

\ /

#
d+1 x N
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The linear regression algorithm

1. Construct the matrix X and the vector y from the data set

(x1,91), -, (XN, yn) as follows

_ § - _ -
2] Y1
X9 Y2
X — . y —
T
— XN YN
\ L d, R L d,
input data matrix target vector

.. Compute the pseudo-inverse X1 = (XTX)~1XT

s Return w = Xy
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Linear regression

Linear regression learns a real-valued function

for classification

y=f(x) €ER

Binary-valued functions are also real-valued! -

Use linear regression to get w where w'x,, &

In this case, sign(w'x,,) is likely to agree with v, = +1

Good initial weights for classification

Fl eR

Yy, = =1

23



Linear regression boundary

Symmetry

Average Intensity

Learning From Data - Lecture 3 18/23



e |nput representation

e | inear Classification

e [inear Regression

e Nonlinear Transformation

Learning From Data - Lecture 3

Outline
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Linear is limited

Data: Hypothesis:
% o X "

X O

°© &
O
© o

O

X X
x % )
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Another example
Credit line is affected by ‘years in residence’

but not in a linear way!

Nonlinear [|z; < 1|] and [[x; > 5]| are better.

Can we do that with linear models?

21/23



Linear in what?
Linear regression implements

d
E W; Xy
i=0

Linear classification implements

d
sign g W; T;
1=0

Algorithms work because of linearity in the weights

Learning From Data - Lecture 3 22/23



Transtorm the data nonlinearly

(Qfl,QfQ)
X y %
X O
S o
O
(@)
(@)
X
x X% )

o

>

2 2
xlaxQ

)
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Review of Lecture 3

e |inear models use the ‘signal’:

d
Z W;l; — wW'X
i=0
- Classification: h(x) = sign(w'x)
- Regression: h(x) = w'x
e Linear regression algorithm:
w = (X'X) X"y

“one-step learning’

e Nonlinear transformation:

- W'X is linear in w

P L .
- Any x —— Z preserves this linearity.

P
- Example: (z1, x9) — (2%, x3)
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Outline

e Nonlinear transformation (continued)

® Crror measures

e Noisy targets

e Preamble to the theory

Learning From Data - Lecture 4 2/22
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x x
X (o) x
x o
°© o
o
© o
o
x x
x X% -
1. Original data
Xn € X
x x x
(o)
°© o
(o)
© o
(o)
x
x <% )

4. Classify in X’-space

g(x) = §(@(x)) = sign(% "' ®(x))

o

o
S

x
X %
x
x
x
< X
X x
x
(o)
(o)

2. Transform the data

x
X x
< %

x x
(o) % x
(o) %
% (o)
0o

3. Separate data in Z-space
3(z) = sign(¥"2)
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What transforms to what

P
X = (Zlf(),llfl,"' ,Id) > Z — (ZO7Z17 """""" 7ZCZ)

P

X1, X2,y XN 7 21,22, " ,ZN
P

Y, Y2, YN ’ Y, Y2, -+ YN

No weights in X W = (W, Wi, v e awg{)
o) = si(WB(x)
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Outline

e Nonlinear transformation (continued)

e Error measures

e Noisy targets

e Preamble to the theory
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The learning diagram - where we left it

UNKNOWN TARGET FUNCTION
f. X=

TRAINING EXAMPLES
(X oY ) e (X X% )

LEARNING

ALGORITHM

HYPOTHESIS SET
H

PROBABILITY
DISTRIBUTION

Pon X

FINAL

HYPOTHESIS
g: X=Y
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Error measures

What does "h =~ f" mean?
Error measure: E(h, f)
Almost always pointwise definition: e (h(x), f(x))

Examples:

Squared error e (h(x), f(x)) =(h(x) — f(x))
Binary error: e (h(x), f(x)) =[h(x) # f(x)]

7/22



From pointwise to overall

Overall error E/(h, f) = average of pointwise errors e (h(X), f(X))

In-sample error:

Qut-of-sample error:

Learning From Data - Lecture 4 8/22



The learning diagram - with pointwise error

UNKNOWN TARGET FUNCTION PROBABILITY
DISTRIBUTION
f: X=9
P on X
X, , , X /
TRAINING EXAMPLES 1 N

(X oY ) e (X X% )

g (X)=f(X)

LEARNING FINAL
AL GORITHM HYPOTHESIS
g: X~

HYPOTHESIS SET
H
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How to choose the error measure

Fingerprint verification:
Two types of error:

false accept and false reject

How do we penalize each type?

f
+1 —1
+1 false accept

h

—1 | false reject

Learning From Data - Lecture 4

r_|_1

| —1

you

intruder
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The error measure - for supermarkets

Supermarket verities fingerprint for discounts

False reject is costly; customer gets annoyed!

,
False accept is minor; gave away a discount +1 you

and intruder left their fingerprint ©

| = 1 intruder

f
+1 -1
+1] 0 1
h —1110 O

Learning From Data - Lecture 4
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T he error measure - for the CIA

CIA verities fingerprint for security

False accept is a disaster!

(+1 you

False reject can be tolerated

Try again; you are an employee ©

| = 1 intruder

f
+1 -1
L +1] 0 1000
—1| 1 0
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Take-home lesson

The error measure should be specified by the user.

Not always possible. Alternatives:

Plausible measures: squared error = Gaussian noise

Friendly measures: closed-form solution, convex optimization

13/22



The learning diagram - with error measure

UNKNOWN TARGET FUNCTION PROBABILITY
— DISTRIBUTION

Pon X

TRAINING EXAMPLES !
(X oY ) e (X X% )

ERROR
MEASURE
e() g (X)=f(x)

LEARNING FINAL
ALGORITHM || HYPOTHESIS
g: X~

HYPOTHESIS SET
H
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Noisy targets

The ‘target function' is not always a function

Consider the credit-card approval:

age 23 years
annual salary $30,000
years in residence 1 year
years in job 1 year
current debt

$15,000

two identical’ customers — two different behaviors

15/22



Target ‘distribution

Instead of y = f(x), we use target distribution:

P(y | x)

(x,y) is now generated by the joint distribution:

Noisy target = deterministic target f(x) = E(y|x) plus noise y — f(x)

Deterministic target is a specia

P(y

P(x)P(y | x)

case of noisy target:

X ) is zero except for y = f(x)

16/22



The learning diagram - including noisy target

UNKNOWN TARGET DISTRIBUTION PROBABILITY
Py I X) DISTRIBUTION
target function f. X—=9 plus noise
P on X
X, , , X /
TRAINING EXAMPLES . A .
(Xl 1y1)1 ran (XN’)N) ERROR
MEASURE
e() g (x)=f(X)
LEARNING FINAL
——
L EERITI HYPOTHESIS
gX=Y

HYPOTHESIS SET
H
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Distinction between P(y|x) and P(x)

Both convey probabilistic aspects of x and y

The target distribution P(y | x)
s what we are trying to learn

The input distribution P(x)
quantifies relative importance of x

Merging P(x)P(y|x) as P(x,y)

mixes the two concepts

Learning From Data - Lecture 4

UNKNOWN TARGET DISTRIBUTION
P(y | X)
target function f. X—=9 plus noise

TRAINING EXAMPLES

(X, ¥,)s oee s (%)

UNKNOWN
INPUT

DISTRIBUTION

P (X)
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Outline

e Nonlinear transformation (continued)

® Crror measures

e Noisy targets

e Preamble to the theory
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What we know so far

Learning is feasible. It is likely that

Eoui(g) = Ein(g)

s this learning?

We need g =~ f, which means

Eout(g) ~ (

Learning From Data - Lecture 4 20/22



The 2 questions of learning

FEoui(g) = 0 is achieved through:

Eou %Ein d Ei ~ ()
t({)t 2 (9) 2l , L(%) —

Learning is thus split into 2 questions:

1. Can we make sure that E,:(g) is close enough to Ei,(g)7?

2. Can we make Ej,(g) small enough?

21/22



What the theory will achieve

Characterizing the feasibility of learning for

infinite M \ )’c—of—samme error

model complexity

Error

Characterizing the tradeoff:

Model complexity T Ein !
Model complexity T Eou — By |

in-sample error

|
|
|
e VC dimension, dyc

Learning From Data - Lecture 4 22/22



Review of Lecture 4 e Noisy targets

e Error measures y=f(x) — y~Plylx)

- User-specified e (h(x), f(X))

UNKNOWN TARGET DISTRIBUTION

P(y | X)
r_|_1 you target function f. X—=9 plus noise
f —> 9
| —1 intruder UNKNOWN
TRAINING EXAMPLES INPUT
(xl ,yl), . (XN’¥\|) DISTRIBUTION
- In-sample: P (X)
1 N
Ein(h) = — g e (h(Xn) f(x ))
) n
N n—1 B (X17 yl)a T (XN7 yN) generated by

- Qut-of-sample P(x,y) = P(x)P(y|x)

Eoi(h) = Ex[e (h(x), f(x))] - Eou(h) is now Ex [e (h(x), )]
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Outline

e From training to testing

e ||/lustrative examples

e Key notion: break point

o Puzzle
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The final exam

Testing:

Pl|E, — E| >€e]< 2 e 2N

Training:

P[|E, — Ey| > €] < 2Me 2N

3/20



Where did the M come from?

The Bad events B,,, are

“‘Ein(hm) il Eout(hm)| > 6” B 2

The union bound:

P|B; or By or --- or B,

SP[Bl] P[BQ] e P[BM| 3

no overlaps: M terms

Learning From Data - Lecture 5 4/20



Can we improve on M7

Yes, bad events are very overlapping!
AFE, . change in +1 and —1 areas

AFE,,: change in labels of data points

|Ein(h1) — Eout(h1)| = |Ein(h2) — Eou(he)]

Learning From Data - Lecture 5 5/20



What can we replace M with?

Instead of the whole input space,

we consider a finite set of input points,

and count the number of dichotomies

Learning From Data - Lecture 5 6/20



Dichotomies: mini-hypotheses

A hypothesis h: X — {—1,+1}

A dichotomy h: {x1,Xs,- - ,xy} — {—1,+1}
Number of hypotheses |H| can be infinite

Number of dichotomies |H(x1,Xs, -+ - ,Xxx)| is at most 2%

Candidate for replacing M

7/20



The growth function

The growth function counts the most dichotomies on any N points

my(N)= max |H(xq, - ,Xy)]
Xl,-H,XNEX

The growth function satisfies:
mH(N) < oV

Let's apply the definition.

8/20



Applying my(N) definition - perceptrons

9/20



Outline

e From training to testing

e |llustrative examples

e Key notion: break point

e Puzzle
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Example 1: positive rays

h(x) =—1 . h(x) =+1
— XN H—HL O—O—O0—O—
r1 To I3 X N

H issetof h: R— {—1,+1}
h(x) = sign(z — a)

mH(N):N+1

Learning From Data - Lecture 5 11/20



Example 2: positive intervals

h(x) =—1 h(x) =41 h(x) =—1
& S A S O C e © e
L1 L2 A3 LN

H issetof h: R — {—1,+1}

Place interval ends in two of N 4+ 1 spots

N +1

1
2

mu(N) = (V1) +1 = IN?

Learning From Data - Lecture 5 12/20



Example 3: convex sets

H issetof h:R* — {—1,+1}
h(x) = +1 is convex
mH(N) — 2N

The N points are ‘shattered’ by convex sets

Learning From Data - Lecture 5 13/20



The 3 growth functions

e H is positive rays:

e H is positive intervals;

e H Is convex sets:

14/20



Back to the big picture

Remember this inequality?

9,2
P[|E, — Eo| > €] < 2M e 2N
What happens if my(IN) replaces M7
my(N) polynomial = Good!

Just prove that my(IN) is polynomial?

15/20



Outline

e From training to testing

e |[lustrative examples

e Key notion: break point

e Puzzle
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Break point of 'H

Definition:
It no data set of size k can be shattered by H, o
then k is a break point tor H
X
mH(k) < 2F
* 0
For 2D perceptrons, k = 4

A bigger data set cannot be shattered either

17/20



Break point - the 3 examples

e Positive rays my(N) =N + 1
break point kK = 2 o o

e Positive intervals my(N) = 2N?+ N + 1
break point k = 3 o o o

o Convex sets my(IN) = 28

break point £ = oo’

18/20



Main result

No break point =  my(N) =2V

Any break point =  my(V) is polynomial in N

19/20



Puzzle

X1 X2 X3

® O O
O @ O
O O @

20/20



Review of Lecture 5 e Break point

e Dichotomies o

e Maximum # of dichotomies

X1 X2 X3
@) O O
e Growth function o o e
O o O
o O O

my(N)=  max |H(xq, - ,Xy)]
Xl,---,XNEX
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Outline

e Proof that my (V) is polynomial

e Proof that my(NN) can replace M
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Bounding my(N)

To show:  my(N) is polynomial

We show:  my(N) < --- < -+ < a polynomial

Key quantity:

B(N, k): Maximum number of dichotomies on N points, with break point k

3/18



Recursive bound on B(N, k)

Consider the following table:

# of rows | X1 X9 XN_1 | XN
+1 +1 +1 | +1
—1 1 1 | —1
B(NJC):CV_I_Qﬁ S s} : + + :
+1 -1 -1 | —1
-1 +1 —1 | +1
+1 -1 +1 | +1
-1 -1 +1 | +1
S 15} 5 5 5 5
+1 -1 +1 | +1
S, -1 -1 —1 1
+1 -1 +1 | —1
-1 -1 +1 | —1
Sy 6] 5 5 5 5
+1 -1 +1 | —1
-1 -1 -1 | —1




Estimating o and 3

Focus on x1, X9, -+ ,Xny_1 columns:

X1 X2 XN-1
+1 +1 ... 41
-1 41 ... +1
Oé_I_ﬁ S B(N_lvk) Q : : : :
+1 -1 —1
—1 +1 —1
+1 -1 +1
—1 -1 +1
B f '
+1 -1 +1
-1 -1 —1
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Estimating G by itself

Now, focus on the Sy = S5 U S, rows:

8 < B(N—1,k—1)

Learning From Data - Lecture 6

+1
+1

+1

6/18



Putting it together

B(N,k)= a + 23

a+ 8 < B(N—1,k)

XD
VAN

B(N —1,k—1)

# of rows | X1 X9 XN_1 | XN
+1 +1 +1 | +1
-1 +1 +1 | -1

St o : : : :
+1 -1 -1 | -1
-1 +1 —1 | +1
+1 -1 +1 | +1
-1 -1 +1 | +1

SQL 15} : : : :
+1 -1 +1 | +1
S, -1 -1 -1 | +1
+1 -1 +1 | -1
-1 -1 +1 | -1

So 16 5 5 5 5
+1 -1 +1 | —1
-1 -1 -1 | -1




Numerical computation of B(N, k) bound

B(N,k) < B(N —1,k) + B(N — 1,k — 1) I
° o 12 3 4 5 6
\j 112 2 2 2 2
O 2013 4 4 4 4
31147 8 8 8

N 415 11

501 6

6|1 7
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Analytic solution for B(N, k) bound

B(N,k) < B(N —1,k) + B(N — 1,k — 1)

k

2 3 4 5 6

Theorem: 1 2 2 2 2 2
k-1 9

N
N 4
5 \g
. 0
1. Boundary conditions: easy

Learning From Data - Lecture 6 9/18



2. The induction step
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It is polynomiall

For a given 'H,, the break point k is fixed

mu(N) < kzi (7)

2=0 ;

maximum power is N1

11/18



Three examples
> ()

_ ?

1=0

e H is positive rays: (break point k = 2)

e H is positive intervals: (break point k = 3)
mu(N) =2N?4+iN+1 < IN?4+iN+1

e H is 2D perceptrons: (break point k = 4)
mu(N)= 7 < N*4+2N+1

Learning From Data - Lecture 6 ].2/].8



Outline

e Proof that my(IN) can replace M
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What we want

Instead of:

P[ |Ewn(g) — Eou(g)| > €] M e %N

VA
DO

VWe want:

P[|Ew(g) — Eo(g)] > €] < 2 mp(N) e 2N

14/18



Pictorial proof ©

e How does my (V) relate to overlaps?

e \What to do about E

e Putting it together

15/18



Hoeffding Inequality Union Bound VC Bound

<2

space of
data sets

(&) (b) ()
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What to do about F 4

0000000000 E.(h) cececceeee
E..(h) E'(h) eeeceeceee

Learning From Data - Lecture 6 17/18



Putting it together

Not quite:

P[|Ew(g) — Eou(g)] > €] < 2 muy(N) e 2N

but rather:

_ L2
P[ ‘Ein(g)_Eout(g)‘ >€] < 4 mH(QN) e 8N

The Vapnik-Chervonenkis Inequality

Learning From Data - Lecture 6 18/18



Review of Lecture 6 e The VC Inequality
o mH(N) IS pOIynomlaI Hoeffding Inequality Union Bound VC Bound
it H has a break point k <Y
]f space of
data sets
1 2 3 4 5 6
111 2 2 2 2 2 o t—
211
311
(a) (b) (c)
N 4|1 ® o ] i
511 j
6 1 — 2 N
. . O ]P)HEin(g)_Eout(g)| >€] S 2 M €
| | |
(N (R !
mu(N) < <)
)
i=0 1
— P[|Ein(g) — Eouwt(g)] > €] < 4 my(2N) e 8
maximum power is N<—1
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Outline

e [ he definition

e \/C dimension of perceptrons

e Interpreting the VC dimension

e Generalization bounds
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Definition of VC dimension

The VC dimension of a hypothesis set H, denoted by d\(H), is

the largest value of IV for which my(N) = 2V

“the most points ‘H can shatter”

N < dy.(H) = 'H can shatter N points

k >dy.(H) = k isa break point for H
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The growth function

In terms of a break point k:

mu(N) < : (7)

In terms of the VC dimension d:

1=0

. . dv
maximum power is N Ve
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Examples

e H is positive rays: o
ve =1
e H is 2D perceptrons: o
dyve = 3 - .
e H is convex sets: . °
ve = 00

5/24



VC dimension and learning

dvc(H) is finite = g € H will generalize
e Independent of the learning algorithm
e Independent of the input distribution

e Independent of the target function

Learning From Data - Lecture 7

TRAINING EXAMPLES
(XY, ) s (X X))

FINAL

HYPOTHESIS
g =f

HYPOTHESIS SET
H
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VC dimension of perceptrons

Ford: 2, dvc =

In general, dve =d+1

We will prove two directions:

dve < d—+1

dyve > d—+ 1

7/24



A set of N = d + 1 points in R? shattered by the perceptron:

Here i1s one direction

X is invertible

ek

8/24



Can we shatter this data set?

U1 +1
Y2 +1 : _ _
Forany y = | = |, can we find a vector w satisfying
] Yd+1 ] ] +1 )
sign(Xw) =y
Easy! Just make Xw =y

which means w = X1y

9/24



We can shatter these d + 1 points
This implies what?

[a] dv(j:d—|—1
bl dve >d+1 v
lc] dve <d+1

|[d] No conclusion
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Now, to show that d,. < d-+1

We need to show that:

|a] There are d 4+ 1 points we cannot shatter
|b] There are d + 2 points we cannot shatter
[c] We cannot shatter any set of d + 1 points

|[d] We cannot shatter any set of d + 2 points v

11/24



Take any d + 2 points
For any d + 2 points,
X1y 9y Xd+1y Xd+2

More points than dimensions = we must have

Xj = E a; X;

7]
where not all the a;'s are zeros
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So?

Xj = E a; X;

17]

Consider the following dichotomy:

X;'s with non-zero a; get  y; = sign(a;)
and x; gets y; = —1

No perceptron can implement such dichotomy!

13/24



Why?

X; = E a; X; — WX; = E a; W'X;

i 1£]
If y; = sign(w'x;) = sign(a;), then a; w'x; > 0

This forces wx; = Z @ Wx; > 0
17]

Therefore,  y; = sign(w'x;) = +1

Learning From Data - Lecture 7 ]_4/24.



Putting it together

We proved dye <d+1 and dyc>d+1

d\/C:d—l—].

What is d + 1 in the perceptron?

't is the number of parameters wy, wy, - -+ , Wy

15/24



Outline

e [ he definition

e \/C dimension of perceptrons

e Interpreting the VC dimension

e Generalization bounds
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1. Degrees of freedom

Parameters create degrees of freedom

# of parameters: analog degrees of freedom

dyc: equivalent “binary’ degrees of freedom

17/24
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T he usual suspects

Positive rays (d,c = 1)
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Not just parameters

Parameters may not contribute degrees of freedom:

d. measures the effective number of parameters

Learning From Data - Lecture 7 19/24



2. Number of data points needed

Two small quantities in the VC inequality:

P[|Ew(g) — Eou(g)] > €] < dmp(2N)e 5N
N—— —
)

f we want certain € and 0, how does N depend on dy 7

et us look at Nie=HN

20/24



Nde—HN

Fix N% N = small value o
N30o—N
How does NN change with d? 7 |
100/\
Rule of thumb:
N > 10 dyc
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Outline

e [ he definition

e \/C dimension of perceptrons

e Interpreting the VC dimension

e Generalization bounds
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Rearranging things
Start from the VC inequality:

P[| Byt — )| > €] < dmy(2N)e s N
W
0

Get € in terms of o

dmy (2N
0 = 4mH(2N)6_%E2N —> €= \/% In mHé( )

N— —
()

With probability > 1 — 9, |Eowt — Ein| < Q(N,H, )
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Generalization bound

With probability > 1 — 9, E...—FE, <Q

—

With probability > 1 — 9,

Learning From Data - Lecture 7 24/24



Review of Lecture 7 e Utility of VC dimension

e VC dimension d,(H) 1
most points H can shatter R
A

e Scope of VC analysis

N d\/c
TRANING. EXAPLES Rule of thumb: N > 10 dyc

FINAL
HYPOTHESIS

e Generalization bound

HYPOTHESIS SET EOU.t S Eln —I_ Q

H
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Outline

e Bias and Variance

e [ecarning Curves
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Approximation-generalization tradeoff

Small E,u: good approximation of f out of sample.
More complex H == better chance of approximating f
Less complex 'H == better chance of generalizing out of sample

ldeal H ={f} winning lottery ticket ©
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Quantifying the tradeoff

VC analysis was one approach: E, < Ei, + ()

Bias-variance analysis is another: decomposing E,; into
1. How well H can approximate f

2. How well we can zoom in on a good h € 'H

Applies to real-valued targets and uses squared error

4/22



Start with Eout

Now, let us focus on:

Bp | (97 (x) - f(x))°

5/22



The average hypothesis
To evaluate Ep [(g(p) (x) — f(X))z}

we define the ‘average hypothesis g(x):

§(x) = =p | ¢ ()]

Imagine many data sets Dy, Dy, - -- , Dg
| K
a ~ (Dg)
g(x) ~ - glﬁg b(x)

6/22






Bias and variance

Therefore, Ep [Eout(g(p>)] = Bx [ED {(g(D) (%) = f(X))QH

= Ey|bias(x) + var(x)]

bias + wvar

8/22



The tradeoff

bias = E {(g(x) — f(x))Q} var = Ey [ED {(g(D) (x) — g(X))QH

®f
W e

earning From Data - Lecture 8 9/22



Example: sine target

f:-1,1]—R f(x) = sin(7x)

Only two training examples! N =

Two models used for learning:
H()I h(QZ‘) =%
Hi: h(x)=azx+0b

Which is better, Hy or H1? e

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
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Approximation - H versus H;

H() Hl

15t . 15l

l,

05

Oﬁ

_05 -

-1+

15} Eout — 050 T 15} EOUt — 020

) \ \ ‘ L ‘ ‘ ‘ ‘ ‘ ) ! \ \ \ \ \ \ \ \
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 038 1 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Learning - H, versus H;

15 B 1 15 -

\

o

-0.5

b

15h . -15}

-2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ -2 ! ! ! ! ! ! ! ! !

-1 -08 -06 -04 -02 0 0.2 04 0.6 08 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 08 1
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Bias and variance - H,
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Bias and variance - H;

14/22

Learning From Data - Lecture 8



and the winner is ...

bias = 0.50

Learning From Data - Lecture 8

var = 0.25

bias = 0.21

var = 1.69
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| esson learned

Match the ‘'model complexity’

to the data resources, not to the target complexity
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Outline

e Bias and Variance

e [earning Curves

Learning From Data - Lecture 8 17/22



Expected E,,+ and E;,

Data set D of size NV

Expected out-of-sample error  Ep[E,u(gP))]
Expected in-sample error  Ep[Ei,(gP)]

How do they vary with N7

18/22



The curves

g\ Eout C;)
L1 LI
B k>
g Em g Eout
14 14
/ E;
Number of Data Points, NV Number of Data Points, NV
Simple Model Complex Model
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VC versus bias-variance

5 5

5 Eout L EOUt

B generalization error .S variance

0 0

) (D)

o S -

LL] Ein Ll>j / Ein
iIn-sample error bias

Number of Data Points, NV Number of Data Points, NV

VC analysis bias-variance
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Linear regression case

Noisy target y = W*'X 4+ noise

Data set D = {(x1,91),---, (XN, YnN) }
Linear regression solution: w = (X'X) Xy
In-sample error vector = Xw — y

'Out-of-sample’ error vector = Xw — y’

21/22



Learning curves for linear regression

Best approximation error = o2
S b
Expected in-sample error = 0% (1 — %) L] &
O 2
o l|lO
4+
O
2 d+1 o
Expected out-of-sample error = o (1 e ) X E.
: : _ 2 (d+1
Expected generalization error = 20 ( = )

d+ 1 Number of Data Points, N

Learning From Data - Lecture 8 22/22



Review of Lecture 8 e Learning curves

How Fi, and E,. vary with IV

\‘\ Eom

variance

//E_m’—,
/ bias

o/ .
@/' Number of Data Points, N
H bias
\-\ B

generalization error

/o/ E,

in-sample error

Number of Data Points, N

e Bias and variance

Expected value of By w.rt. D

= bias 4+ var B-V:

Expected Error

VC:

Expected Error

e /N o VC dimension’
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VWhere we are

e Linear classification v

e Linear regression

e Logistic regression

e Nonlinear transforms V
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Nonlinear transforms

X = (QjOaajla"' 7$d)

o

) 7Z = (207 %50 00°0000000¢ 7ZCZV)

Fach z; = ¢;(x) z = P(x)

o, 2 .2
Example: z = (1,1, X9, T129, T7, T5)

Final hypothesis g(x) in X space:

sign (W' @(x)) or w'®(x)
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The price we pay

x = (x0, 21, ,Zdq) q)> 7 = (20, 21, o %)
! !
W W
dye =d+1 dve < d+1

4/24



Two non-separable cases
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First case

Use a linear model in X'; accept E;, > 0

N
x
or ~ O
* [
Insist on Fi,, = 0; go to high-dimensional Z O
X x
x
x X

6/24



Second case

. 2 .2
7 — (173317:1327 :1313327 3317332)

Why not: z = (1, z7, z3)
or better yet:  z = (1, z% + x3)

or even: 7 = (513% =+ $% —0.6)

7/24



| esson learned

Looking at the data before choosing the model can be hazardous to your Ey

Data snooping

Learning From Data - Lecture 9




Logistic regression - Outline

e [ he model

e Error measure

e Learning algorithm
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A third linear model

d
1=0

linear classification inear regression logistic regression
h(x) = sign(s) h(x) = s h(x) = 0(s)
X0
X0
X0 X1
X1 e s X > h(x)
- > h(x) 2 h(x)
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The logistic function 6

The formula: 1

e

soft threshold: uncertainty

sigmoid: flattened out 's’
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Probability interpretation

0(s) is interpreted as a probability
Example. Prediction of heart attacks
Input X: cholesterol level, age, weight, etc.
0(s): probability of a heart attack

The signal s = w'x “risk score’

12/24



Genuine probability

Data (X, y) with binary v, generated by a noisy target:

f(x) fory = +1;

Ply | x) =«
W1 1—f(x) fory=-—-1

13/24



Error measure

For each (x,y), y is generated by probability f(x)
Plausible error measure based on likelithood:
it h = f, how likely to get y from x7

(

h(x) for y = +1;

Py | x) = <
1) 1 —h(x) fory=—1.

\
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(

h(x)

Py | x) = <\1 b

Substitute h(x) = 8(w™x), noting 0(—s) =1 — 6(s) 0 /

Formula for likelihood

for y = +1;
for y = —1.

Py | x) = 0(y w'x)

Likelihood of D = (X1, 1), ..., (XN, YN) is

H P(yn ’ Xn) — H H(anTXn)

n=1
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Maximizing the likelihood

L 1 al
Minimize — Nln (H Oy, W' Xn))

] “—————  ‘‘cross-entropy error

16/24



Logistic regression - Outline

e [ he model

e Error measure

e Learning algorithm
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How to minimize FE;,

For logistic regression,

N
1 .
E,(w) = N E In (1 + eIV X") «—— iterative solution

n=1

Compare to linear regression:

N
1
Ein(w) = N nz:l (W'x,, — yn)2 «— closed-tform solution

Learning From Data - Lecture 9 18/24



lterative method: gradient descent

General method for nonlinear optimization Em(W)
Lﬁi

Start at w(0); take a step along steepest slope -
O
LU

Fixed step size: w(l) = w(0) +n Vv =

What is the direction v?

Weights, w

Learning From Data - Lecture 9 19/24



Formula for the direction v

AEin = Ein( W(O) -+ 77\7) — EID(W(O))

> —n||VE,(w(0))]]

Since V is a unit vector,

VEm(W(O))
IV Ei(w(0))]

vV =

20/24



Fixed-size step?

How 7) affects the algorithm:

= = ‘ =\ large 7
= = =
S 5 S
L1 L L
L s s
o o o small 1
= = £
Weights, w Weights, w Weights, w
1) too small 1 too large variable 1 — just right

1) should increase with the slope
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Easy implementation

Instead of
Aw = 9 v
__, YEu/w(0)
IV Ei(w(0))]
Have
Aw = —1n VE,(w(0))

Fixed learning rate 7
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Logistic regression algorithm

[ —

i

=

=

Initialize the weights at ¢ =0 to w(0)
fort=0,1,2,... do
Compute the gradient

yan
Vin = =5 Z 14 eynw' ()

Update the weights: w(t + 1) = w(t) — nV E;,
[terate to the next step until it is time to stop
Return the final weights w

Xn
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Summary of Linear Models

Approve
or Deny

Credit
Analysis

Perceptron

Amount

of Credit

Classification Error
PLA, Pocket,. ..

Learning From Data - Lecture 9

Linear Regression

Probability
of Default

Squared Error
Pseudo-inverse

Logistic Regression

Cross-entropy Error
Gradient descent
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Review of Lecture 9 e Gradient descent
e Logistic regression r
X0 L§
X1 %
S P
X9 h(X) =
Weights w
*a 0(s) g
- Initialize w(0)
e Likelihood measure -Fort=20,1,2,--- [to termination]
N N w(t+1)=w(t) —n VE.(w(t))
1_[1P(y” | Xn) = 1_[16’(an Xn) - Return final w
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Outline

e Stochastic gradient descent

e Neural network model

e Backpropagation algorithm
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Stochastic gradient descent

N
GD minimizes: — % nz_; e( )

(1—|— —Ynw X’n) < in logistic regression

by iterative steps along —V E,:
Aw = — Ui VEm(W)

V E, is based on all examples (x,,, y,,)
"batch” GD

3/21



The stochastic aspect

Pick one (x,,,y,,) at a time. Apply GD to e (h(Xn)7 yn)

2|~

“Average’ direction: E, |—Ve (h(x,),y.)]|=

= -V Ein

randomized version of GD

stochastic gradient descent (SGD)

Learning From Data - Lecture 10 4/2]_



Benefits of SGD

1. cheaper computation

2. randomization ]\J

Ein

3. simple

Weights, w

Rule of thumb: \‘

0.1 ) randomization helps
n = 0.1 works

Learning From Data - Lecture 10 5/21



Remember movie ratings?’

K
€= \\Tij — E Uik Vjk
k=1

Learning From Data - Lecture 10

2

SGD In action

user @@ @ O® e °
t uil ui2ui3 uiK
movie o/ @| e 6@ - O
T Y,y U
i
rating
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Outline

e Stochastic gradient descent

e Neural network model

e Backpropagation algorithm

Learning From Data - Lecture 10 7/2].



Biological inspiration

biological function ~ ——  biological structure

Learning From Data - Lecture 10 8/21



Combining perceptrons

9/21



rom Data - Lecture 10

Creating layers

1 1.5
h1 N
1 “‘ 1
—1 "l..
h 1
) )
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The multilayer perceptron

1.5

Wi eeX —1.5

3 layers

B

“feedtorward”

1

11/21



A powerful model

A A

N

N N

/

Target 8 perceptrons

2 red flags for generalization

and

b

P
L
-SSR -

16 perceptrons

optimization

12/21



The neural network

O O O
@ AD D AT
332\

N\

. /

input x hidden layers 1 <[ < L output layer [ = L

h(x)

0(s)

m Data - Lecture 10 13/21



How the network operates

1 <[ < L layers
wg) 0 <i <d'"Y inputs
1 <j <d¥ outputs
d(l—l)
() _ Oy _ (1) ,.(-1)
z; —«9(8]- ) =10 Z w;; T,
1=0
Apply x to .CC§O>°°' .CL‘EZ%) — — ng) = h(x)

Learning From Data - Lecture 10

linear

e

hard threshold
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Outline

e Stochastic gradient descent

e Neural network model

e Backpropagation algorithm

Learning From Data - Lecture 10 15/21



Applying SGD
All the weights w = {wg)} determine h(x)

Error on example (X, ¥) is

e (h(xn),yn) = e(w)

To implement SGD, we need the gradient

0 e(w)
o, wg-)

Ve(w): for all 2,7,

16/21



Computing
()

1]
0 e(w) _ .
We can evaluate 1) one by one: analytically or numerically
0 w,;
J
A trick for efficient computation:
de(w) de(w) 0s
ouwl) 950 9wl
1] J iJ
0 sV _
We have —{5 = CEEZ b We only need: 2 e((l“;) = Y
0 W, ; 0 S, J

Learning From Data - Lecture 10 17/21



o for the tinal layer

For the final layer [ = L and 3 = 1.

0'(s) =1 — 6%(s)

for the tanh

18/21



Back propagation of o

S 9 e(w) 9 s\ o
-1 0 S§-l> Gxgl_l) 0 sgl_l
a)
Z 5O« wf]l) « «9’(3?‘”)
j=1
11
(1= () Y w0
1=1

19/21



Backpropagation algorithm

—

N

(00)

~Initialize all weights wg-) at random

fort=0,1,2,... do

Pick n € {1,2,--- , N}
(1)

Forward: Compute all x;
(1)

Backward: Compute all 9;

(1) (1) (I=1)

Update the weights: w;; «— w;/ —1n

lterate to the next step until it is time to stop

- Return the final weights wg-)

65(l>

J

20/21



Final remark: hidden layers

learned nonlinear transform

interpretation’
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Review of Lecture 10

e Multilayer perceptrons

AT an ap

NIBZ |/ ANAS

Logical combinations of perceptrons

e Neural networks

(=1
CE§-Z> — 0 ( Z wg) x§l1)>

1=0

where 6(s) = tanh(s)

input x hidden layers 1 <[ < L output layer [ = L

e Backpropagation

where
a4

(I-1) _ (I1—-1)y2 () )
0, = (1_(557; )°) Zwij 53‘
j=1
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Outline

e What is overfitting?

e | he role of noise

® Deterministic noise

e Dealing with overfitting

2/23



lllustration of overfitting

Simple target function
5 data points- noisy
4th-order polynomial fit

Ein =0, Eout S huge

Learning From Data - Lecture 11 3/23



Overtitting versus bad

Neural network fitting noisy data

Overfitting:

Learning From Data - Lecture 11

Ein l

Eout T

generalization

Error

35

05F

i E
Early stopping out
E.
in
| | | | | | | | |
1000 2000 3000 4000 5000 6040 7000 8000 9000 10000

Epochs

4/23



The culprit

Overfitting: Tfitting the data more than is warranted’

Culprit: fitting the noise - harmful

5/23



Case study

10th-order target + noise H0th-order target

& V
O Data
— Target

6/23




Two fits for each target

> N ()
O Data O Data
2nd Order Fit 2nd Order Fit
— 10th Order Fit () — 10th Order Fit
T T
Noisy low-order target Noiseless high-order target

2nd Order 10th Order 2nd Order 10th Order

E, 0.050 0.034 E. 0.029 107°

E. 0.127 9.00 E. 0.120 7680

Learning From Data - Lecture 11 7/23



An irony of two learners

Two learners O and R

They know the target is 10th order

O chooses Hig R chooses Ho S

O Data
2nd Order Fit
— 10th Order Fit

X

Learning a 10th-order target

Learning From Data - Lecture 11 8/23



We have seen this case

Remember learning curves?

Ho Hio
S S
LE\\ EOU.t LE
o E D
5 In 5 E. .
D) D)
O | O |
< <
L1 L1

/ Ei
Number of Data Points, [N Number of Data Points, N
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Even without noise

The two learners H1p and Hos |
They know there is no noise é
Is there really no noise? > (#)
O Data
2nd Order Fit
0 —10th Order Fit
X

Learning a 50th-order target

Learning From Data - Lecture 11 10/23



A detailed experiment

Impact of noise level and target complexity

Qy
v = fla) + )= a2+ e
o2 q=0
normalized

noise level: o2

target complexity: ()¢

data set size: N

11/23



The overfit measure

We fit the data set (z1,41), -, (N, yn) using our two models:

Ho: 2nd-order polynomials H1p: 10th-order polynomials

Compare out-of-sample errors of

g2 € Ho and g9 € Hig

O Data
2nd Order Fit
— 10th Order Fit

X

overfit measure: E,:(g10) — Fout(92)

Learning From Data - Lecture 11 12/23



The results

IO.2 100
0.1 -

<

El kS

>

- 0 = 50

5 :

© 4+

= 01 o
.

0 -0.2
100 . 120 0 -0.2
Number of data points, N \ I/ Number of dé%g point%QON
Impact of o* Impact of Qy

)y

|
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lmpact of “noise”

0.2 100 0.2

~ 2 > 0.1
_b— 0.1 i._i
“>) o

D E50 10

8. : S
& S

= 0.1 20 -0.1
|_

! -0.2 ! 50 100 150 -0.2

Nurr?ger of d%%g point%,z%\f Number of data points, NV

Stochastic noise Deterministic noise

number of data points T  Overfitting
stochastic noise T Overfitting
deterministic noise T Overfitting

\
/

Learning From Data - Lecture 11
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e What is overfitting?

e [ he role of noise

e Deterministic noise

e Dealing with overfitting

Learning From Data - Lecture 11

Outline

15/23



Definition of deterministic noise

The part of f that ‘H cannot capture:  f(x) — h*(x)

Why “noise"? B

Main differences with stochastic noise:

1. depends on 'H

2. tixed for a given x

Learning From Data - Lecture 11 16/23



Impact on overfitting

100
Deterministic noise and ()¢

Finite V: H tries to fit the noise

Target complexity, Q;
o1

100 . 120
Number of data points, IV

how much overfit

Learning From Data - Lecture 11 17/23



Noise and bias-variance

Recall the decomposition:

Bp |(97)(x) = F(x))*] = En | (9P(x) = (x))°| +| (900) — (x))’]

var(x) bias(x)

What if f is a noisy target?
y=fx)+ecx)  E[(x)]=0

18/23



A noise term

-+ cross terms }

19/23



Actually, two noise terms

N————
var bias o2
1 T

deterministic noise

stochastic noise

20/23



e What is overfitting?

e [ he role of noise

e Deterministic noise

e Dealing with overfitting

Learning From Data - Lecture 11

Outline
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Two cures

Regularization: Putting the brakes

Validation: Checking the bottom line

22/23



Putting the brakes

O Data
— [arget
— it
— ~N
T T
free fit restrained fit
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Review of Lecture 11 Fitting the noise, stochastic/deterministic

e Overfitting e Deterministic noise

Fitting the data more than is warranted h-

O Data >
— Target

—Fit

(@)
(@)

0.2
'O.l

0

I-O.l
-0.2

o1
(@)

L

Target complexity, Q;

. 1 . . 0 . . .
VC allows it; doesn't predict it T e o G e
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Outline

e Regularization - informal

e Regularization - formal

o Weight decay

e Choosing a regularizer

2/21



Two approaches to regularization

Mathematical:

ll-posed problems in function approximation

Heuristic:

Handicapping the minimization of Ej,

3/21



A familiar example

/

/

.é

—_——

,
/

‘.A.,,,
b\

\
/,; /,/

X
AN

\
R\

,W,/HWN,
,//

/,//
\\

/%
\

Y
oY

\

Wy

N
i
y

!
N

zrlx_\

e

X

X

with regularization

without regularization

4/21
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and the winner is ...

without regularization with regularization
S g(x = g(x
sin(x) sin(x)
X L
bias = 0.21 var = 1.69 bias = 0.23 var = 0.33

Learning From Data - Lecture 12 5/21



The polynomial model

Hq: polynomials of order () inear regression in Z space
- ) |
: purd J

;LQ(f)_

Legendre polynomials:

Ll L2 L3 L4

T 1(32% — 1) 1(52° — 3x) +(352* — 3027 + 3)

6/21



Unconstrained solution

Given (xlayl)f e 7(:CN7y’n) - (Zhyl)?' o 7(ZN7yn)
1 N
L B . 2
Minimize FEj,(w) = Nng_l(w Zn — Yn)

Minimize + (Zw —y)"(Zw —y)
wi, = (Z72) 1727y

7/21



Constraining the weights

Hard constraint: H i1s constrained version of Hjg with w, = 0 for ¢ > 2
Q
Softer version: Z w?] < (' “soft-order’ constraint
q=0
Minimize =~ (Zw —y)"(Zw —y)

subject to: w'w < (C
Solution: Wy, instead of wy,

8/21



Solving for wye,

Minimize FEi,(w) = % (Zw —y)' (Zw — y) E:, = const.

subject to: w'w < (C
VEin(Wreg) X —Wyeg
A
— _Qﬁwreg

VEin(Wreg) =+ Q%Wreg = 0

Minimize  Ei,(w) + %WTW CT Al

9/21
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Augmented error

Minimizing  Ba(W) = Ey(w) + 3w'™w

~ (Zw —y) (Zw —y) + &wW'

w  unconditionally

— solves —

Minimizing Ei(w) = % (Zw —y)"(Zw —y)

subject to: w'w < (C «—— VC formulation

Learning From Data - Lecture 12 10/21



Minimize

as opposed to

The solution

Eoo(w) = Epn(w) +sw'w

((zw ) (Zw —y) + A wTw)

0 — Z'(Zw —y)+ 2w =0

Wiee = (ZTZ4+ M) Z7y

wi, = (Z'2)"'Z"y

(with regularization)

(without regularization)

11/21



The result

Minimizing  Ei, (W) + % w'w  for different \'s:
A=0 A = 0.0001 A =0.01

o Data

— Target

—Fit

> 2 > >
X X X
overfitting — — —

Learning From Data - Lecture 12
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Weight ‘decay’

Minimizing  Fi,(w) + % w'w s called weight decay. Why?

w(t+1)=w(t) — n VE, (w(t)) — 27 % w(t)

Gradient descent:

= w(t) (1 203) — 1 VE, (w(t))

Applies in neural networks:

I, 4dU=1) 4

e & 2
ww=3"3" 3" (w))

Learning From Data - Lecture 12 13/21



Variations of weight decay

Emphasis of certain weights: qu wg

Examples: v, = 29 = low-order fit
v, =279 = high-order fit
Neural networks: different layers get different v's

Tikhonov regularizer: w'l'I'w

14/21



Even weight growth!

We ‘constrain’ the weights to be large - bad|
weight growth

Practical rule:

stochastic noise is "high-frequency’ \/

deterministic noise is also non-smooth

weight decay

Expected Eo

Regularization Parameter, A

—> constrain learning towards smoother hypotheses

Learning From Data - Lecture 12 15/21



General form of augmented error

Calling the regularizer @ = €(h), we minimize

Rings a bell? Ll

Eout(h) S Eln(h) T Q(H)

E..¢ is better than Ej, as a proxy for Ly

Learning From Data - Lecture 12 16/21



e Regularization - informal

e Regularization - formal

o Weight decay

e Choosing a regularizer

Learning From Data - Lecture 12

Outline
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The pertect regularizer (2

Constraint in the ‘direction’ of the target function (going in circles ©)

Guiding principle;

Direction of smoother or “simpler”

Chose a bad €27
We still have A

18/21



Neural-network regularizers

linear

Weight decay: From linear to logical R

Weight elimination:
hard threshold

Fewer weights = smaller VC dimension

Learning From Data - Lecture 12 19/21



Early stopping

Regularization through the optimizer!

When to stop?

Learning From Data - Lecture 12

validation

as a regularizer

Error

35

05F

Early stopping

|
1000

|
2000

3000

| |
4000 5000  60(
Epochs

0

|
7000

|
8000

9000 10000
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The optimal A

Ly 0.6¢
k 0% = 0.5 \ Q; = 100

\I

O
-
~

Expected E
O
o1
ql\D
|
-
b
S
Expected E
O
kﬁ
|
w
S

O
N
O
—
|
-
Ot

No
o1
Q
DO
|
-

‘/05 ] 1.5 2 0.5 ' 15 D

Regularization Parameter A Regularization Parameter A

Stochastic noise Deterministic noise
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Review of Lecture 12 e Choosing a regularizer

e Regularization E.e(h) = Epn(h) + %Q(h)

constrained — unconstrained ()(h): heuristic — smooth, simple h

E., = const. most used: Weight decay

A: principled; validation

A = 0.0001 A= 1.0

Minimize Eau(W)= Ey(w) +3sw'™Ww z z
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Outline

e [ he validation set

e Model selection

e Cross validation

2/22



Validation versus regularization

In one form or another,  FEy,(h) = Ei,(h) + overfit penalty

Regularization:

Eow(h) = Eiy(h) + overfit penalty

regularization estimates this quantity

Validation:

Eoi(h) = FEin(h) + overfit penalty

validation estimates this quantity

Learning From Data - Lecture 13 3/22



Analyzing the estimate

On out-of-sample point (x, %), the error is e(h(x),y)

Squared error:  (h(x) — y)2

Binary error: [h(x) # y]

D [e(h(x), Z‘/)} = Eou(h)

var [e(h(X), y)}: o’

4/22



From a point to a set

On a validation set (x1,41), - , (XK, YK ), the error is Eyi(h) = = Ze(h(xk)7 Yr:)

K
1
k=1

5 [Ba(h)] = o S E [e(h(x). )] = Bulh)

= %

var [Eval(h)} = 70 Zvar [e(h(xk),yk)} —

K
1
k=1

Eua(h) = Eou(h) + O (%?)

5/22



K is taken out of IV

Given the data set D = (x1,91), - , (XN, YN)

K points — validation NN — K points — training
T T
val train

O(L) Small K == bad estimate

\/F /5, out

Expected Error

Large K =— ¢

~ E

Number of Data Points, N — K
— K

Learning From Data - Lecture 13 6/22




K is put back into NV

D — Dtrain U Dval
D
! Lol N ¥
N N — K K
Dtrain
(N — K)
D — g Dtrain — g
I
Eva = FEu(g7) Large K — bad estimatel . Dot
(K)
Rule of Thumb:
K = E \J v
O g Ea1(9)

7/22



Why ‘validation’

35

D, is used to make learning choices

[t an estimate of E,,; affects learning:

Error

the set is no longer a test set!

It becomes a validation set ' Early stopping Eout
051
E.
N
O0 10‘00 20‘00 30‘00 4(;00 50‘00 60‘( 0 7(;00 80‘00 90‘00 10000

Epochs
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What's the difference?

Test set is unbiased; validation set has optimistic bias

Two hypotheses  hy and he  with  Ey(h1) = Eoy(he) = 0.5
Error estimates ey and e;  uniform on [0, 1]
Pick h € {hy,he} with e = min(ey,es)

E(e) < 0.5 optimistic bias

9/22



Outline

e [ he validation set

e Model selection

e Cross validation

Learning From Data - Lecture 13 10/22



Using D,, more than once

M models Hy, ..., Huy

Use Dipain to learn g for each model

Evaluate g, using Dy,
B, = Val(gT;,); m:17°°°7M

Pick model m = m™ with smallest E,,

Learning From Data - Lecture 13

Hq Ho . HM
Dtraim i i i
Eq Eo B
pick the best
(Hm*’ Em*)
D +
I *
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T he bias

We selected the model 'H,,,* using D,

0.8}
E..1(g,,+) is a biased estimate of Eou(g )
20.7¢
llustration: selecting between 2 models -
)
50.6}
o
O
X
LL]
0.5}

° Validation Sé’? Size, K 2
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For M models: 'Hy, ..., Hy

How much bias

D, is used for ‘training’ on the finalists model:

7_(val — {91_792_7 R 791\_/[}

Back to Hoeftding and VCI

Eo(oos) < Funloo) + 0( 1/ )

regularization A early-stopping I’

13/22



Data contamination

Error estimates: Em, Etesta Eval

Contamination:  Optimistic (deceptive) bias in estimating [,

Training set: totally contaminated
Validation set: slightly contaminated

Test set: totally clean’

14/22



Outline

e [ he validation set

e Model selection

e Cross validation
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The dilemma about K

The following chain of reasoning:

Eout(g)% OUt(g_)% val(g )
(small K) (large K)

highlights the dilemma in selecting K

Can we have K both small and large? ©

16/22



| eave one out

N — 1 points for training, and 1 point for validation!
Dn — (X17 y1)7 N (Xn—17 yn—1)7 e{n_ayﬁ%a (Xn—|-17 yn—H)a S (XN7 yN)

Final hypothesis learned from D,, is g,

e, = Euilg,) =el(g,(Xn); Un)

N
L 1
cross validation error: FE., = —Zen
N 1
mn=—

17/22



Illustration of cross validation

Learning From Data - Lecture 13

€9

E.

| —

(e1 + ey + e3)

()

()
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| inear:

Constant:

Learning From Data - Lecture 13

i
63:
7
es,
o |
O

Model selection using CV
€9
° o)
| SN
|
eli
|
|
X X
(o) (o)
e1: e,
o ° o °
D
X X
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Cross validation in action

Digits classification task

Symmetry

x 5 ~<~'

o 1 24 '\' : , * x S
g o0 At
x Not 1 Phadess

A

Average Intensity

(17 L1, 372) . (]-7 L1, L2, QZ’%, L1X2, L

Learning From Data - Lecture 13

27 :Ul, 561372, - o

Different errors

0.03

0.02}

0.01t

5 10 15 20
# Features Used
5 4 3 9 9 3 4 5
ey L1y L1 L2, L{Lo, L1L9, L1L9y, 5172)
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The result

without validation with validation

Symmetry
Symmetry

LN
t\
PN

Average Inensiy |
Ein — O% Eout — 25% Ein — 08% Eout — 15%

N
AL

Average Intensity
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| eave more than one out

Leave one out: N training sessions on N — 1 points each

More points for validation?

D
Dy Dy D3 Dy Ds Dg Dy Dg Dy Do
train validate train

% training sessions on IN — K points each

10-told cross validation: K = %

22/22



Review of Lecture 13

e Validation
D
() !
Dt rain
(N — K)
I
g Dyal
(K)
\J y
g E.1(9)

Eia(g™) estimates FEou(9g)

e Data contamination

0.8}

©
\l

cted Error

E out (9

©
o

o Expe
1
:
—~
!
S |
N

> Validation Sé’? Size, K 23

D, slightly contaminated

e Cross validation
D
Dy, D9 D3 Dy Dy Dg D7 Dg D9 Dy

train validate train

10-fold cross validation
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Outline

e Maximizing the margin

e [ he solution

e Nonlinear transforms
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Better linear separation

Linearly separable data

Different separating lines /

Which is best?

Two questions:
1. Why is bigger margin better?

2. Which w maximizes the margin?

Learning From Data - Lecture 14 3/20



Remember the growth function?

All dichotomies with any line:

Learning From Data - Lecture 14 4/20



Dichotomies with fat margin

Fat margins imply fewer dichotomies

L X ]

L O ]

Learning From Data - Lecture 14 5/20



Finding w with large margin

Let x,, be the nearest data point to theplane w'x = 0. How far is it?

2 preliminary technicalities:

1. Normalize w:

wx,| =1

2. Pull out wy:

w = (wy, - ,wy) apart from b

The planeisnow |w'x+b=0]| (no xg)

Learning From Data - Lecture 1 6/20



Computing the distance

The distance between x,, and the plane wx+0=0  where |[Ww'x,, +b| = 1

The vector w is L to the plane in the X space:

®X,

Take x” and x” on the plane W

wx +b=0 and wx"+b=0 /X

A\

— w(x' —x")=0

Learning From Data - Lecture 1¢ 7/20



and the distance is ...

Distance between x,, and the plane:

=>

Take any point x on the plane

Projection of X, — X on W

W= = distance = w(x, — X)|
Nl
1 1 1
distance = —‘WTXn—WTX —‘WTXn—I—b—WTX—b‘ —
gl gl gl

Learning From Data - Lecture 14 8/20



Learning From Data - Lecture 14

The optimization problem

1

Iw]]

Maximize

subject to min |w'x, +b| = 1
n=1,2,....IN

Notice: |[W'x,, +b| = y, (W'x, + b)

1

Minimize 5 wW'w

subject to Yy, (WX, +b) >1 for n=1,2,...

9/20



Outline

e Maximizing the margin

e [ he solution

e Nonlinear transforms

Learning From Data - Lecture 14 10/20



Constrained optimization

Minimize  —w'w
subject to Yy, (W'x,+b)>1 for n=1,2,...,N

weRY beER

Lagrange?  inequality constraints = KKT

11/20



We saw this before

Remember regularization?’

Minimize Ei,(w) = ~ (Zw —y)"(Zw —y)

subject to: w'w < (C

V E., normal to constraint

optimize constrain
Regularization: E. W'W
SVM: W'W E,

Learning From Data - Lecture 14

FE:, = const.
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ing From Data - Lectut

Lagrange formulation

1
Minimize L(w,b, ) = 5 W

w.rt.  wand b and

e 14

W — Z an(Yn (WX, +b) —1)

n=1

maximize w.r.t. each o, > 0

N
VieL = w — Zanynxn: 0
n=1

oL al
- Z AnlYn = 0
ob —

13/20



N
W = E AnYnXnp
n=1

Substituting ...

and Zoznyn =0

n=1
| N
in the Lagrangian L(w,b,a) = 5 WWwW —
n=1
N | NN
e o) =Y -5 23
Maximize w.r.t. to o subjectto o, >0 for n=1,--- N




The solution - quadratic programming

Y1Y1 XiX1  Y1Y2 XiX2 ... YYN XiXN
, 1 XX XdXo ... XX
min = o | YRV XRXT Y2l XoXs Y2YN X2XN | + (-1 a
. . . linear
UNY1 XNX1 YNY2 XNX9 ... YNYN XNXN

-

quadratic coefficients
subject to ya=0

linear constraint

0, < o < oo,
lower bounds upper bounds

15/20



QP hands us o

Solution: ¢ = g, -+ , an E,, = const.

N
n=1

KKT condition: Form=1,--- ,N
o (Yyp (WX, +0) —1) = 0

\We saw this beforel

o, >0 =— X, is a|support vector

Learning From Data - Lecture 14 16/20



Support vectors

Closest x,,'s to the plane: achieve the margin

— Yy, (WX, +b) =1

Solve for b using any SV:

Yn (WX, +b) =1

Learning From Data - Lecture 14 17/20



Outline

e Maximizing the margin

e [ he solution

e Nonlinear transforms
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7z Instead of x

N
L) = Zan -~
n=1
” X
X o X
X O
S o
o
O o
O
X ’::*i C

Learning From Data - Lecture 14

-
YnYm CnQpy ZnZy,

X
X
X
x %
O X x
O X
15&, O
Oo0
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“Support vectors’ in X space

Support vectors live in Z space
In X space, ‘pre-images of support vectors
The margin is maintained in Z space

Generalization result

E|# of SV's]
N —1

E[Eout] S

Learning From Data - Lecture 14 20/20



Review of Lecture 14

e [ he margin

Maximizing the margin = dual problem:

N 1

2

N

-
YnUYm Onlipy XnXm
m=1

L)

-t

i\

n

quadratic programming

e Support vectors

X, (or z) with Lagrange a;, > 0

E|# of SV's]
N -1

(in-sample check of out-of-sample error)

]E[Eout] S

e Nonlinear transform

Complex h, but simple H ©
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Outline

e [ he kernel trick

e Soft-margin SVM
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What do we need from the Z space?

N NN
L) = Zan ~ 5 22 YnYm Onln /AN
n=1 n=1 m=1
Constraints: «a, >0 for n=1,--- , N and 27]:7:1 Yy, =
g(x) = sign (w'z + b) need z' 7

where W = E O YnZn,

and b Y (W'z,, +b) =1 need z 2z,

3/20



Generalized inner product

Given two points x and X’ € X', we need z'Z’

let z'2' = K(x,x’) (the kernel)  “inner product” of x and x’
Example: x = (1, 23) — 2nd-order ®
z = ®(x) = (1,x1, 9, 9, 23, T172)

K(x,x") =22 =14 x12'1 + 200’y +
2 /2_|_ 2,12 4 / /
$1$ 1 3721' 2 $1$ 1:17233 )

4/20



The trick

Can we compute K (x,x’) without transforming x and x'7
Example: Consider K(x,x') = (1+xx)? = (1+ 2121 + 227'2)*
= 1 + x%az’% + x%az’g + 212y + 2xox’y + 2x1x 10T o

This is an inner product!
(1, 22, 22, V221, V2290 , V22120 )
(17 3317 3327 \/_3317 \/_3327 \/_331332>
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The polynomial kernel

X =R’ and ®:X — Zis polynomial of order Q

The “equivalent” kernel K(x,x") = (1 + XTX/)Q

(14 212’ + 2ox’s + - - - + 242'9)¥
Compare for d =10 and @ = 100

Can adjust scale: K(x,x') = (ax'x’ +b)¥
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We only need Z to exist!

If K(x,x') is an inner product in some space Z, we are good.

Example: K(x,x') = exp (—*y |x — X’H2>
Infinite-dimensional Z :  take simple case

K(z,2') = exp (—(x —a')?)

= exp (—22) exp (_x,z) EOO: 2k (2)k(2")F

k!
k=0

exp(2xz’)
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T his kernel in action

Slightly non-separable case:
Transforming X into oo-dimensional Z

Overkill?  Count the support vectors
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Kernel formulation of SVM

Remember quadratic programming?  The only difference now is;

[ y1y1 K (X1, X1) y1yo K (X1, X2) . 1 yn K (x1,Xy) ]
Yoty K (X2, X1) Yoyjo K (X2, Xo) . Yoyn K (X2, X )
yny1 K (X, X1) YNy K (X, X2) . YNYNK (XN, XN)

-_—
quadratic coefficients

Everything else is the same.

Learning From Data - Lecture 15 9/20



The final hypothesis

Express  ¢g(x) =sign (w'z +b) in terms of K(—, —)

W = Z apYnZ, —  g(X) = sign ZanynK(Xn,X)+b

Zpn, 1S SV an >0

where b =y, — Z Y K (X0, X))

oy, >0

for any support vector (c,, > 0)
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How do we know that Z exists ...

... for a given K(x,x")?  valid kernel
Three approaches:
1. By construction
2. Math properties (Mercer's condition)

3. Who cares? ©
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Design your own kernel

K(x,x') is a valid kernel iff

1. It is symmetric and 2. The matrix: K(x1,x1) K(xi1,%x2) ... K(x1,Xy)

s positive semi-definite

foranyxy, -+ , Xy (Mercer's condition)
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Outline

e [ he kernel trick

e Soft-margin SVM
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Two types of non-separable

slightly: seriously:

14/20



Error measure

Margin violation: y, (W'x, +b) > 1 fails
Quantify: y, (WX, +b) >1 — &, &,>0

N
Total violation = an
n=1
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The new optimization

N
1
Minim L. C )
nimize o w'w + ;15

subject to Yy, (Wx,+b)>1—-¢, for n=1,...,N
and &, >0 for n=1,...,N

weRY | beR , £cRrY
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Lagrange formulation
N
1
L(w,b,& 0, B) =5 wiw + Can Y nlyn (WX +b) — 146,) — Z B &

n=1
Minimize w.r.t. w, b, and £ and maximize w.r.t. each a,, > 0 and 571 Z 0

N
Viel = W — Zanynxn: 0

oL al
=y Z XnlYn = 0
0b —
aL: — Oy — ﬁn -

¢,
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and the solution is ...

N | NN
Maximize Lla) = Zozn — 5 2 2 YnYm Cnlim X5 Xom, w.rt. to o
n=1 n=1 m=1
N
subjectto 0 <, < C for n=1,--- N and Zanyn —
n=1
N
— W = Zanynxn
n=1

N
L I .
minimizes o W'W + C’;ﬁn

18/20



Types of support vectors

margin support vectors (0 < a,, < C)

Yn (WX, +0) =1 (&, = 0)

non-margin support vectors (o, = C')

Yn (WX, +0) <1 (&, > 0)
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Two technical observations

1. Hard margin: What if data is not linearly separable?

“primal — dual” breaks down

2. Z: What if there is wy?’

All goes to b and wy — 0

20/20



Review of Lecture 15 e Soft-margin SVM

e Kernel methods 1 a
Miimie T C )
nimize o w'w + ng_lﬁ

K(x,x") = 2"Z' for some Z space

Same as hard margin, but 0 < o, < C




Learning From Data

Yaser S. Abu-Mostafa
California Institute of Technology

Lecture 16: Radial Basis Functions

Sponsored by Caltech’s Provost Office, E&AS Division, and IST e  Thursday, May 24, 2012




Outline

e RBF and nearest neighbors

e RBF and neural networks

e RBF and kernel methods

e RBF and regularization
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Basic RBF model

Fach (x,,yn) € D influences h(x) based on ||x — x,||
— —

radial
Standard form:

N
h(x) =D wn exp (=[x - )

basis function
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The learning algorithm

N
Finding wq, - -+, wy: h(x) = anexp (_'Y Hx—anQ)
n=1
based on D = (Xl,yl), Tty (XN7yN>

E,=0: h(x,)=y,forn=1,---,N:

N
Z W €290 (_'7 HXn_XmH2> = Un
m=1

Learning From Data - Lecture 16 4/20



N
> w,, exp (—v HXn—XmHQ) = n
m=1

2
exp(—7 ||x1 —x1]|)
2
exp(—7 [|x2 — x1]|%)

exp(— [[xx — xi][")

If ® is invertible

The solution

2
exp(— [[x1 = %)
exp(—7 [[x2 = x])

exp(— [xy — xn||°)

w =® 'y | ‘“exact interpolation”

N equations in N unknowns
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The effect of 7y

N
h(x) = > wnexp (—7 [Ix = %)
=1

-ﬂ.

small 7y large 7y
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RBF for classification

h(x) = sign (EN: Wy, €Xp (—7 |x — Xn2))

Learning: ~ linear regression for classitication

N
s =Y wy exp (=[x =%
n=1

Minimize (s —y)? on Dy = %1

h(x) = sign(s)

7/20



Relationship to nearest-neighbor method

Adopt the y value of a nearby point: similar effect by a basis function:
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RBF with K centers

N parameters wq, -+ ,wy based on IV data points

Use K < N centers: pq,---, g Instead of xi,--- ,Xpn

K
h(x) = we exp (=[x — )
k=1

1. How to choose the centers ;.

2. How to choose the weights wy,

Learning From Data - Lecture 16 9/20



Choosing the centers

Minimize the distance between X, and the closest center ;. : | K-means clustering

Split x1,--+,Xy into clusters Sp,--- , Sk

K
Minimize Z Z HXn—Nk:HQ

Unsupervised learning ©

NP-hard ®
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An iterative algorithm

K
Lloyd’s algorithm: lteratively minimize S: S: HXn—IJk:HQ w.rt. g, Sk
k=1 XnESk
1
XnESE

Si — {xn 1 |xp — il < all ||x, — pell}

Convergence —— local minimum
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Lloyd's algorithm in action

+ 4,
: + )
1. Get the data points -, )
® + ® +
+ +
N +
2. Only the inputs! S A -
+ + g
o+ L ® Lt X +
+ + +
3. Initialize the centers ' t . .
o
N + L+
4. lterate
®
" -
1 ++
5. These are your s ;
®

Learning From Data - Lecture 16 12/20



Centers versus support vectors

support vectors RBF centers

+ ® T ¥
+ + @
+ +
+ . u +
+ + ® + ® +
+ + + +
+ +
+ ® + +
+ + @ +
+ LR - LR ®
+ * + + ® + * + +
+ + +1 + o+ L ® L+ +
+ + + + + + + +
+ + + +
+ N * + .
+ ® +
+ + +
A Lo+
+ + +
®
®
+ + ®
# # +
+ +
®
®
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Choosing the weights

K
Zwk exp (—7 %, — NkH2> ~ Yn N equations in K< N unknowns
k=1

2
exp(—7 [x1 = )
eXP(—W HXz — MlH )

| 2
exp(— |lxn — p1]|%)

if &' is invertible

2
exp(—7 ||x1 — uKHQ)
exp(—7 ||x2 — pk|")

| 2
exp(—7 ||[xny — x|
<)

w=(0'P) loTy

2

pseudo-inverse

Y1
Y2
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RBF network

h(x)

The “features” are exp (—7 |x — p,kHQ)
b
w1

Nonlinear transtorm depends on D

—> No longer a linear model

ol

A bias term (b or wy) is often added

Ix = p| — pkl|

15/20



Compare to neural networks

h(x) h(x)
wl » K wl K
k
R wix W W

RBF network neural network
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Choosing 7y

K
Treating 7y as a parameter to be learned h(x) = Zwk exp (—’Y |x — Mk”2>
k=1

lterative approach (~ EM algorithm in mixture of Gaussians):
1. Fix 7y, solve for wy, -+, wg

2. Fix wy, -+ , Wk, minimize error w.r.t. 7y

We can have a different 7y} for each center iy,

17/20



Outline

e RBF and nearest neighbors

e RBF and neural networks

e RBF and kernel methods

e RBF and regularization
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RBF versus its SVM kernel

SVM kernel implements:

Sign Z AnYn €XP (_7 HX - XnH2> + 0

oy, >0

Straight RBF implements:

K
sign Z Wy exp (—7 |x — HkH2> + b
k=1

Learning From Data - Lecture 16 19/20



RBF and regularization

RBF can be derived based purely on regularization:

N (h(xn) —yn)” + A iak / ) (%)Qdm

n=1 k=0 B

“smoothest interpolation”
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Review of Lecture 16
nearest
neighbors @

e Radial Basis Functions

neural
networks I

K
h(x) =3 wp exp (= [Ix = )
k=1

SVM Kernel :/\

regularization /M\/

. 0 O
\ unsupervised 0 00 o

OOO.O o O
learning o) 2

Choose p.'s: Lloyd's algorithm

o O

Choose wy's: Pseudo-inverse
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Outline

e Occam's Razor

e Sampling Bias

e Data Snooping
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Recurring theme - simple hypotheses

A “quote” by Einstein:

An explanation of the data should be made as simple as possible, but no simpler

The razor: symbolic of a principle set by William of Occam
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Occam’'s Razor

The simplest model that fits the data is also the most plausible.

Two questions:

1. What does it mean for a model to be simple?

2. How do we know that simpler is better?

4/22



First question: ‘simple’ means?

Measures of complexity - two types: complexity of h and complexity of 'H
Complexity of h: MDL, order of a polynomial
Complexity of H: Entropy, VC dimension
e \When we think of simple, it's in terms of h

® Proofs use simple in terms of H
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and the link i1s ...

counting: £ bits specify h == h is one of 2¢ elements of a set H

Real-valued parameters?’ Example: 17th order polynomial - complex and one of "many"

Exceptions? Looks complex but is one of few - SVM
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Puzzle 1: Football oracle

00000000000000001111111111111111
0000000011111111

00001111

0011
01

Learning From Data - Lecture 17

= = O K~ O

e |etter predicting game outcome
e Good calll

e More letters - for 5 weeks

® Perfect record!

e Want more? $50 charge @©

e Should you pay?
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Second question: Why is simpler better?

Better doesn't mean more elegant! It means better out-of-sample performance

The basic argument: (formal proof under different idealized conditions)

Fewer simple hypotheses than complex ones

M (V)

= less likely to fit a given data set
ma(N)/27

= more significant when it happens

The postal scam: my(IN) = 1 versus 2%

Learning From Data - Lecture 17 8/22



A fit that means nothing

conductivity
conductivity
conductivity

temperature temperature temperature

Scientist A Scientist B “falsifiable”

Conductivity linear in temperature?

Two scientists conduct experiments

What evidence do A and B provide?

9/22



Outline

e Occam's Razor

e Sampling Bias

e Data Snooping
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Puzzle 2: Presidential election

In 1948, Truman ran against Dewey in close elections

A newspaper ran a phone poll of how people voted i I
ﬁ_ C!T«];xmgﬂ @a’lg Grﬂrm" K

CTe ) wrmntmun, WOTEREN L 18

Dewey won the poll decisively - newspaper declared: D[w“ DEFEATS TRUMAN l

G.O.P. Sweep Indicated in State; Boyle Leads in City

REPUBLICAN TorsCoghlan RECORD CITY BULLETIS ON ELECTIONS f;"'! o PUTS G.0.P.
" TICKET AHEAD v, VOTE SEEN IN - e g BACK IN THE

OF 1944 YOTE [ e ] LATE TALUIES

e = | Saburhan Ballot
Town Rallotin n,.’r-—‘;.—-""
Glvos Trend | wmmt Near 376,000

11/22
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On to the victory rally ...

. of Truman ©

lt's not 0's fault:

Pl |EBw— Eout| >€] < 0
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T he bias

In 1948, phones were expensive.

If the data is sampled in a biased way, learning

will produce a similarly biased outcome.

Example: normal period in the market

Testing: live trading in real market

13/22



Matching the distributions

Methods to match training and testing distributions
Doesn’'t work if:

Region has P = 0 in training, but P > 0 in testing

Learning From Data - Lecture 17

T PO

training

testing



Puzzle 3: Credit approval

Historical records of customers
Input: information on credit application:

Target: profitable for the bank

Learning From Data - Lecture 17

age 23 years
gender male
annual salary $30,000
years in residence 1 year
years in job 1 year
current debt $15 000
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Outline

e Occam's Razor

e Sampling Bias

e Data Snooping
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The principle

If a data set has affected any step in the learning process,
its ability to assess the outcome has been compromised.

Most common trap for practitioners - many ways to slip @
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Looking at the data

Remember nonlinear transforms?

_ 2 2
z = (1,21, X9, 129, T7, T5)

or Z = (1,:13%,:6%) or z = (1733% + x%)

Snooping involves D, not other information

18/22



Puzzle 4: Financial forecasting

Predict US Dollar versus British Pound

(@8]
O

| | snoopin
Normalize data, split randomly: Diain, Drest

N
O

Train on Dypain only, test g on Diegt

()

.CumulativHe Profit %

=
()

no snooping

0 100 200 300 200 500
Day

Ar_99, AT_19, -, Ar_1 — ATy
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Reuse of a data set

Trying one model after the other on the same data set, you will eventually succeed

If you torture the data long enough, it will confess

VC dimension of the total learning model
May include what others tried!

Key problem: matching a particular data set
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Two remedies

1. Avoid data snooping

strict discipline

2. Account for data snooping

how much data contamination
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Puzzle 5: Bias via snooping

Testing long-term performance of "buy and hold" in stocks. Use 50 years worth of data
o All currently traded companies in S&P500
e Assume you strictly followed buy and hold
e \Would have made great profit!

Sampling bias caused by ‘snooping’
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Review of Lecture 17

e Occam’'s Razor

The simplest model that
fits the data is also the
most plausible.

complexity of A «— complexity of H

unlikely event «— significant if it happens

e Sampling bias

//\\
/ \

7\ PO

| \testing
training |

e Data snooping

snoopin

N
(@)

mﬁ

()

.CumulativHe Profit %

—
(@]

no snooping
100 200 300 400 500
Day

()
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Outline

e [he map of machine learning

e Bayesian learning

e Aggregation methods

e Acknowledgments
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It's a jungle out there

semi-supervised Igzz:;an rocess egverﬁttir&get S stochfastic gradient descent SVM Q [eaming
erministic noise '
listribution—free , ‘ dat a SNoopi ng learning curves
linear regression VIE ali e Ing
collaborative filtering . m xture of expe
decision trees nonlinear transformation sampling bias neural networks 1o ﬁee
| . RBF training versus testing el A
act | V? | ear nf ng linear models bias—variance tradeoff weak | ear ners
ordinal regression cross validation logistic regression data contamination
ensemble learning types of learning perceptrons hidden Markov mo
error measures -
ploration versus exploitation . Kernel methods graphical models
is learning feasible? soft—-order constraint
; N eight deca Boltzmann mact
clustering regul ari zati on EE d Occam’s razor
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THEORY

VC
bias—variance
complexity

bayesian

Learning From Data - Lecture 18

The map

TECHNIQUES

T,

models

methods

linear
neural networks
SVM
nearest neighbors

RBF

regularization
validation

aggregation

Input processing

gaussian processes
SVD

graphical models

PARADIGMS

supervised
unsupervised
reinforcement
active

online
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Outline

e [he map of machine learning

e Bayesian learning

e Aggregation methods

e Acknowledgments
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Probabilistic approach

Extend probabilistic role to all components

P(D | h=f) decides which h

How about P(h = f | D)7

(likelihood)

UNKNOWN TARGET DISTRIBUTION
P(y | X)
target function f: X—=9 plus noise

DATA SET
D= (X2 Y, ) e s (X X%,)

LEARNING

ALGORITHM

HYPOTHESIS SET
H

UNKNOWN
INPUT
DISTRIBUTION

P(x)

g (X)=f(x)

FINAL

HYPOTHESIS
g X=Y
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The prior

P(h = f | D) requires an additional probability distribution:

_ P(D|h=f)P(h=f)

P(h=f|D) D)

x P(D|h=f)P(h=f)

P(h = f) s the prior
P(h = f | D) isthe posterior

Given the prior, we have the full distribution
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Example of a prior

Consider a perceptron: h is determined by w = wg, wy, - - - , Wy

A possible prior on w: Each w; is independent, uniform over |[—1, 1]

This determines the prior over h - P(h = f)
Given D, we can compute P(D | h = f)
Putting them together, we get P(h = f | D)

x P(h=f)P(D|h=f)
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A prior Is an assumption

Even the most "neutral” prior:

X is unknown

The true equivalent would be:

Learning From Data - Lecture 18

X is unknown

X is random

A
P(x)

X is random

Té(x—a)

ail X
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If we knew the prior

... we could compute P(h = f | D) for every h € H

Learning From Data - Lecture 18

—> we can find the most probable i given the data
we can derive E(h(x)) for every X
we can derive the error bar for every x

we can derive everything in a principled way

10/23



When is Bayesian learning justified?

1. The prior is valid

trumps all other methods

2. The prior is irrelevant

just a computational catalyst
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Outline

e [he map of machine learning

e Bayesian learning

e Aggregation methods

e Acknowledgments
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What is aggregation?

Combining different solutions hq, ho, - - - , Ay that were trained on D:;

)

//\
$9999999999999¢

Regression: take an average
Classification: take a vote

a.k.a. ensemble learning and boosting
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Different from 2-layer learning

In a 2-layer model, all units learn jointly:

In aggregation, they learn independently then get combined:

Learning From Data - Lecture 18

training \bdata
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Two types of aggregation

1. After the fact: combines existing solutions

Example. Netflix teams merging “blending’

2. Before the fact: creates solutions to be combined

Example. Bagging - resampling D
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Decorrelation - boosting

Create hy,--- , hy, - - - sequentially: Make h; decorrelated with previous h's:

%@@@@@@@@@@@

Emphasize points in D that were misclassitied

Choose weight of h; based on Ej,(hy)

Learning From Data - Lecture 18 16/23



Blending - after the fact

T
For regression,  hi,hg, -+ ,hy —  g(X) = Z oy hy(X)
t=1
Principled choice of a;'s: minimize the error on an “aggregation data set’ pseudo-inverse

Some «y's can come out negative

Most valuable h; in the blend?
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Outline

e [he map of machine learning

e Bayesian learning

e Aggregation methods

e Acknowledgments
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